Skip to content
My DataBook
My DataBook

Facts, tools and information for Engineers & Scientists.

  • Home
  • Fluid Mechanics
    • Flow Coefficient, Cv, to Flow Factor, Kv, Converter
    • Joukowsky Equation
    • Pumps
      • Head to Pressure Converter
    • Speed of Sound in Gas
    • Speed of Sound in Liquid
  • Mathematics
    • Expansion of Series
    • Geometry
      • 2D Shapes
    • Metric Decimal Prefixes
  • Solid Mechanics
    • Bulk Modulus
    • Stress for Thick Walled Cylinders using Lamé’s Equations
    • Stress for Thin-Walled Spheres & Cylinders
  • Thermodynamics
    • Boltzmann Constant
    • Combustion
      • API Gravity
    • Four Laws of Thermodynamics
    • Gas Constants
    • Ideal Gas Law
My DataBook

Facts, tools and information for Engineers & Scientists.

Boltzmann Constant

Boltzmann Constant

  • Boltzmann Constant

Boltzmann Constant

The Boltzmann Constant, k, is a proportional relationship between the kinetic energy of individual particles and temperature. It is defined as the Universal Gas Constant, R*, divided by the Avogadro constant, N.

(1)   \begin{align*}k = \frac{R*}{N}\end{align*}

Where k = Boltzmann constant (J / K), R* = Universal gas constant (J/mol.K), N = Avogadro constant = 6.02214129×10^23 / mol

Spotted an error on this page? Please help improve the quality of this site! E-mail: webmaster@mydatabook.org
  • Home
  • Fluid Mechanics
    • Flow Coefficient, Cv, to Flow Factor, Kv, Converter
    • Joukowsky Equation
    • Pumps
      • Head to Pressure Converter
    • Speed of Sound in Gas
    • Speed of Sound in Liquid
  • Mathematics
    • Expansion of Series
    • Geometry
      • 2D Shapes
    • Metric Decimal Prefixes
  • Solid Mechanics
    • Bulk Modulus
    • Stress for Thick Walled Cylinders using Lamé’s Equations
    • Stress for Thin-Walled Spheres & Cylinders
  • Thermodynamics
    • Boltzmann Constant
    • Combustion
      • API Gravity
    • Four Laws of Thermodynamics
    • Gas Constants
    • Ideal Gas Law
©2025 My DataBook